
End of Term Status
Presentation
Group 2 - 2D Metroidvania

Cristino Lamadrid, Karen Salinas,
Keith Harryman, Jose Reyes

Overview

1. Doorways and Saving System

2. Enemy AI and Crawler Enemy

3. Camera Movement Scripting and Weapon System

4. Texture Tiling and Minimap

Goals

● Player movement controller script

● Enemies and scripted AI

● Camera manipulation

● Level design (background tiling and parallax)

● Level saving and loading

● Event Manager

Doorways

Transports the player to either a new scene or

a different part of the current level.

Save/Load Game

● Saving the game
○ Move all of the game state that we care

about into a C# object.

○ Serialize into a binary file in the

filesystem.

● Loading the game
○ Read the saved file and deserialize into

a C# object.

○ Move that state back into our game

objects.

○ Start the game.

Sprites Used

Enemy CEO

Oil

Enemy Scripted AI

Enemy shooting animation :

● Consists of four sprites of the enemy grabbing a gun from his pocket, then raising it up

and firing during the last clip.

● It has a “firingTime” and “notFiringTime” to delay bullets spawning, and allow enemy

walking movement. Another time, fireTime, is time which prompts when to spawn the

bullet after the firing animation begins:

animator = GetComponent<Animator> ();

RuntimeAnimatorController ac = animator.runtimeAnimatorController;

for(int i = 0; i<ac.animationClips.Length; i++) {

if(ac.animationClips[i].name == "ceo_shooting"){

fireTime = ac.animationClips[i].length;

}

}

Enemy Scripted AI

Oil movement :

Consists of two conditional blocks

in collision event and two conditional block in

update event with two conditional variables,

“direction” and “is_right”. The “direction” can

be assigned as “horizontal” or “vertical”, and

“is_right” is boolean. The “MiddleGround”

game tag is used between the two walls, and

the regular “Ground” tag is used on the

outsides to differentiate between moving back

up or moving left/right when the oil moves

down to collide with the ground.

Oil Collision Problems & Using Collision
Layers

Because of problems with the oil

colliding with the player and other

enemies, an option provided by Unity was

used which can make objects transparent

to other layers. By deselecting the Player

and Oil layers in the Physics2D options

panel, collision will not happen between

the oil and other oil objects and between

objects in the Player layer which includes

the Enemy(CEO) objects.

Edit->Project Settings->Physics2D

Camera Follow

● Simple camera follow script can work but is too exact.

● Use a “bounding box”
○ Camera only moves when hitting the edges of this box.

○ Using a hidden Rect object, margins, and max/min values for this box.

○ Linear Interpolation (player.x, camera.x, Time.deltaTime * smoothX)

○ Moves camera to the player position over time with an element of smoothing to keep the camera

from moving too fast.

Camera Follow

Player Weapon System

● Requires a GameObject to be instantiated from a prefab.

● Must initially apply the player’s velocity to the bullet.
○ If player is moving, they shouldn’t be able to catch up to the bullet.

● Apply the expected force to the bullet object.

● Aiming requires taking the mouse location and applying the correct rotation.

Things to consider

Camera Follow

● Implement a method of allowing an

external function to hijack the target

of the camera follow script. This

allows us to show the player a special

event such as a new path or door

opening.

Weapon System

● Use an event manager to allow the

player to easily toggle between

weapons or weapon states. This can

be passed on to other similar

functions such as equipped items.

● Bullet state when the player is moving

and aiming at angles or vertically.

● Player animations and sounds.

Tiling

● Makes the foreground and background elements procedurally tile giving the player

the ability to infinitely explore the level.

● Helps prevent too much obvious repetition as the same asset scrolls indefinitely.

Objective: Create a Minimap

● Minimaps (or radars) are known for displaying information the player’s

surroundings.

● Mini-maps should be centered on main character. Then, it should use readable

symbols instead of real models because minimaps are often quite small and the

player wouldn’t recognize the information that the minimap is trying to present.

● Oftentimes, minimaps are circular, but since this is a 2D platformer, we will make

it a long strip sitting on top.

Objective: Create a Minimap

Example of a 2D minimap

Goals for next Semester

1. Animations
2. GUI/HUD

a. Player Health / Armor
b. Ammo
c. Etc

3. Dialogue System
a. Item Pickup
b. Ability Unlocked
c. Etc

