Game Save Manager

Progress Report

CMPS 4910, Fall 2017-Spring 2018
Nick Polach



gamedb.xm|

e Contains many games

e Currently uses <name>, <notes>, and
<linux>

e [Extra tags are for additional features that
will be added if time allows

<game>

<name>Bastion</name>

<notes> </notes>

<cross> </cross>

<locations>

<windows> </windows>

<linux>/home/{user}/.SupergiantGames/Bastion</linux>

<osx> </osx>

</locations>

</game>



dbtools.py

e Contains class “Database”
o Loads XML database into Python dictionary
o Able to create a cache file for the database
m This cache is the serialized dictionary
m Cache is recreated when XML database is updated
m Loading cached database is slightly faster than loading from the XML database

o Simple functions to query the database dictionary (not needed but easier to read/understand
in code

m Ex
e is_in_database(self, gameName) // returns True if game in database
e get saves(self, gameName) // returns list of saves for given game
e get notes(self, gameName) // returns notes for given game



formatools.py

e Contains functions for handling save file paths

e format_saves(saveString)
o Takes file path(s) with placeholders and returns the formatted path
o Ex. /home/stu/{user} -> /home/stu/npolach

e process_saves(gameName, db)
o Returns list of formatted saves for given game from given db



maingui.py

Starts the main graphical interface

Connects widgets to handlers

Inserts games being managed into the list widget
Other complicated things...



Finished so far

e Reading in XML file

o Reads games from xml database into Python dictionary
e Process saves containing placeholders into something useable
e Some graphical interface functionality



Working on next (for next progress report)

e Backing up save files
e Restoring Backups?
SQL Database?



