
Game Save Manager
Progress Report

CMPS 4910, Fall 2017-Spring 2018
Nick Polach

gamedb.xml
● Contains many games

● Currently uses <name>, <notes>, and
<linux>

● Extra tags are for additional features that
will be added if time allows

 <game>

 <name>Bastion</name>

 <notes> </notes>

 <cross> </cross>

 <locations>

 <windows> </windows>

 <linux>/home/{user}/.SupergiantGames/Bastion</linux>

 <osx> </osx>

 </locations>

 </game>

dbtools.py
● Contains class “Database”

○ Loads XML database into Python dictionary
○ Able to create a cache file for the database

■ This cache is the serialized dictionary
■ Cache is recreated when XML database is updated
■ Loading cached database is slightly faster than loading from the XML database

○ Simple functions to query the database dictionary (not needed but easier to read/understand
in code

■ Ex.
● is_in_database(self, gameName) // returns True if game in database
● get_saves(self, gameName) // returns list of saves for given game
● get_notes(self, gameName) // returns notes for given game

formatools.py
● Contains functions for handling save file paths

● format_saves(saveString)
○ Takes file path(s) with placeholders and returns the formatted path
○ Ex. /home/stu/{user} -> /home/stu/npolach

● process_saves(gameName, db)
○ Returns list of formatted saves for given game from given db

maingui.py
● Starts the main graphical interface
● Connects widgets to handlers
● Inserts games being managed into the list widget
● Other complicated things...

Finished so far
● Reading in XML file

○ Reads games from xml database into Python dictionary

● Process saves containing placeholders into something useable
● Some graphical interface functionality

Working on next (for next progress report)
● Backing up save files
● Restoring Backups?
● SQL Database?

